
Calling Watson from RPG

Presented by

Scott Klement
http://www.profoundlogic.com

© 2017-2019, Scott Klement

"Artificial intelligence is about replacing human decision

making with more sophisticated techniques"

2

The Agenda

1. What Is Watson?

2. How Do I Use It?
• The gist of using it

• Where to find info

• Scott's examples

3. Watson Examples from RPG
• Translation

• Natural Language Understanding

• Image Recognition

Agenda for this session:

3

What is Watson?

• IBM's "cognitive" platform
• Aritificial Intelligence (AI)
• Understand things normally

understood only by humans
• Originally played "Jeopardy!"
• Set up and customize for your

needs.

4

Available Two Ways

Watson runs on POWER hardware.
• but, software requires IBM's own Watson (linux-based) platform
• Set up by IBM Watson experts

1. Some big companies have set up Watson on-site
• (working with IBM experts)

2. Anyone can utilitize it via IBM Cloud (formerly: Bluemix)
• this is the only way I've had the opportunity to try it.

IBM Cloud is a platform as a service (PaaS) that:
• Provides a Web Service API (often just called "API")
• You can run it from any application that can do web service calls
• Available for free or very low cost.
• Pay more if your usage is higher.

5

Taking a Tour of the Web Site

https://www.ibm.com/watson/

• The above links have "sign up" options at the top

https://www.ibm.com/watson/products-services/

https://www.ibm.com/cloud/ai

Home Page for Watson:

The Products/Services Available (i.e. interesting part)

Signing Up for IBM Cloud (free)

6

Inside Your IBM Cloud Account

After logging in there is more information

• "Catalog" shows the APIs available
• Watson APIs are under "AI"

• IBM Cloud has other (non-Watson) APIs as well

• You can set up a given service to run in your account
• You can read about the APIs, see docs and demos as well

• This is what your RPG programs will actually connect to
• This is what you can use directly.
• Dashboard/apps shows what you currently have set up

7

Watson Docs / Examples

To read about the different services:
• Go to the catalog link
• In the categories (on the left) click AI

The next page shows what you can "create"
• "create" because you set up your own copy
• On your own (cloud-based) server

If you click one
• Option to create it
• Option to view docs
• Sometimes there's a demo available
• Pricing plan(s)

8

Create a Service on your IBM Cloud

These are the fields you'll need to provide. (You can usually just take the defaults.)

• Service Name = Unique name for your newly created service. IBM Cloud will

generate a name, but you can change it to whatever you like.

• Region to deploy in = Which IBM Cloud server location. Pick the one closest to

you for best performance.

• Resource Group = Your organization.

• Tags = Space you set up when you signed up

• View Docs / View API Docs / Terms = Information for you

After creating

• it will take you to a getting started tutorial page to learn more

• You can access your already-set-up services in the Dashboard
• Getting Started Tutorial

• API Docs

• Service credentials

9

How Does an API Work?

model_id = en-es

text = Hello

Hola

10

Lets Do it In RPG!

11

The Process in RPG

The process is basically the same!

• Show screen

• Get data from the screen and build strings

• Use HTTPAPI (or another HTTP tool) to send

and receive

• Put the response string on the screen

12

Watson Docs – Use Curl

Docs are available for Curl, Node.js, Java and Python (but not RPG!)
Curl is the closest to plain HTTP, and easy to adapt to HTTPAPI

13

Watson Docs – Use Curl

Curl Is:
• command-line tool for HTTP and many other network protocols
• freely available (open source)
• most commonly found on Linux
• but, can run on IBM i in PASE (AIX version)
• or on Windows, Mac OS, Linux, FreeBSD, etc.

The Curl Home Page:
https://curl.haxx.se

The Curl Manual (to understand what the options do):
https://curl.haxx.se/docs/manpage.html

You will mainly use curl to test out and understand the Watson services, but
will adapt them to HTTPAPI (or another HTTP tool for RPG) for production
use. For that reason, I recommend running it on your PC.

14

About HTTPAPI

• HTTPAPI lets you make HTTP calls from RPG

• by Scott Klement, started in 2001 – but please use the latest!

• freely available (open source) at no charge

• very versatile

• very fast

Main routines that we want to use:

• http_req = routine for making an HTTP request (i.e. calling a URL)

• http_stmf = implified version of http_req when data sent/received is an IFS file

• http_string = simplified version of http_req when data send/received is in strings

Other routines that complement the main ones:

• http_setOption = sets various options to control how HTTPAPI works

• http_setAuth = sets userid/password used by the HTTP protocol

• http_debug = generates a file in the IFS with diagnostic information

• http_error = retrieves the last error that occurred in an HTTPAPI routine

15

Adapting Curl to HTTPAPI

CURL OPTION HTTPAPI Option

-X or --request with POST or GET “type” parameter = POST or GET

No -X or –request specified “type” parameter = GET

-u or --user with “user:pass” Use HTTP_setAuth(HTTP_AUTH_BASIC: ‘user’: ‘pass’)

-H or --header with “content-type” “contentType” parameter

-H or --header but not content-type Use HTTP_xproc(HTTP_POINT_ADDL_HEADER)

See Translation with JSON example.

-d or --data SendStr or SendStmf parameter

-F or –form SendStr or SendStmf encoded with “multipart/form-data” (MFD)

See Visual Recognition Example

Use of @ to get from file Use http_req or http_stmf with SendStmf parameter

URL parameter URL parameter

Output Use Response or Result Stmf/String parameters

Or return value from http_string() API.

16

Adapting from Curl -- Example

http_setAuth(HTTP_AUTH_BASIC: 'apikey': '{your-api-key}');

request = '{"text":["Hello"],"model_id":"en-es"}';

url = '{url}/v3/translate?version=2018-05-01';

response = http_string('POST': url: request: 'application/json');

--user apikey:{apikey}

--request POST The URL --data Content type header

String containing input
parameters (JSON)

String containing URL

Curl Example from Docs

RPG Example with HTTPAPI:

17

Media Types (aka MIME types)

Various internet protocols use media types (also called "MIME" types) to identify the data

type of something.

• text/plain = a plain text document

• application/json = a JSON document

• image/jpeg = a .JPG image or picture

• etc.

These HTTP headers can be used to communicate with an API about what sort of data

we're sending and/or receiving back.

• content-type header = the type of the document we're sending

• accept header = the type of the document we want to receive back

18

Parameters Are Encoded in JSON

JSON is a data format used to make a string from program variables

• Here used to represent input/output parameters

• Made of strings, numbers, arrays and data structures

• Or a combination of the above!

Example JSON:

{

"model_id": "en-es",

"text": ["Hello", "How Are You?"]

}

• { } represents a data structure (called "object" in JSON terminology)

• This structure has two subfields named "model_id" and "text"

• Data In quotes is a string

• [] represents an array. "text" is an array containing two elements, both strings.

• All one string. Computer doesn't care about indenting/linefeeds.

{

"source": "en",

"target": "es",

"text": ["Hello", "How Are You?"]

}

This is an alternative input
parameter list, also found

in Watson docs

19

Think: Program Call

{

"source": "en",

"target": "es",

"text": "Hello"

}

{

"translations": [{

"translation": "Hola"

}],

"word_count": 1,

"character_count": 5

}

20

Generating JSON with YAJL

yajl_genOpen(*off);

yajl_beginObj(); // {

yajl_addChar('source': fromLang); // "source": "en",

yajl_addChar('target': toLang); // "target": "es",

yajl_addChar('text': fromText); // "text": "Hello"

yajl_endObj(); // }

request = yajl_copyBufStr();

yajl_genClose();

Very quick introduction to the YAJL tools for generating JSON documents:

• yajl_genOpen / yajl_genClose start/stop the JSON generator

• yajl_beginObj / yajl_endObj create a JSON object (the stuff in curly braces)

• yajl_addChar adds a character string to the open object

• yajl_addNum, yajl_addBool, yajl_beginArray, yajl_endArray also available

• yajl_copyBufStr copies the generated JSON buffer to an RPG string

21

Reading JSON with DATA-INTO

dcl-ds result qualified;

dcl-ds translations dim(1);

translation varchar(1000);

end-ds;

word_count int(10);

character_count int(10);

end-ds;

You must declare an RPG variable that matches the JSON

• { } JSON objects match RPG DS (dcl-ds)

• [] JSON arrays match RPG arrays (DIM)

• Field names must be the same

• JSON Strings (quoted) match RPG char, varchar, ucs2, etc

• JSON Numbers (unquoted) match RPG packed, zoned, integer, etc.

Then use DATA-INTO opcode:

{

"translations": [{

"translation": "{string}"

}],

"word_count": {number},

"character_count": {number}

}

DATA-INTO result %DATA(response) %PARSER('YAJLINTO');

YAJLINTO is a parser for data-into that comes with the YAJL download.

22

Translate with JSON (1 of 5)

**free

ctl-opt option(*srcstmt) dftactGrp(*no)

bnddir('HTTPAPI':'YAJL');

/copy httpapi_h

/copy yajl_h

dcl-f WATSONTR3D workstn indds(dspf);

dcl-Ds dspf qualified;

F3Exit ind pos(3);

end-Ds;

dcl-c UPPER 'ENESFRITPT';

dcl-c lower 'enesfritpt';

fromLang = 'en';

toLang = 'es';

To put all of these concepts together, here's the full RPG code for the translate

example, using JSON rather than plain text.

BNDDIR is used to bind
your program to the tools

Copybooks contain the
definitions we'll need to
call the HTTPAPI and

YAJL routines

23

Translate with JSON (2 of 5)

dou dspf.F3Exit = *on;

exfmt screen1;

if dspf.F3exit = *on;

leave;

endif;

fromLang = %xlate(UPPER:lower:fromLang);

toLang = %xlate(UPPER:lower:toLang);

toText = translate(fromLang: toLang: %trim(fromText));

enddo;

*inlr = *on;

return;

Main loop controls the flow of the program, repeating the screen until F3 key is

pressed.

the translate procedure is

what actually calls Watson

24

Translate with JSON (3 of 5)

dcl-proc translate;

dcl-pi *n varchar(1000);

fromLang char(2) const;

tolang char(2) const;

fromText varchar(1000) const;

end-pi;

dcl-s url varchar(2000);

dcl-s request varchar(2000);

dcl-s response varchar(5000);

dcl-ds result qualified;

dcl-ds translations dim(1);

translation varchar(1000);

end-ds;

word_count int(10);

character_count int(10);

end-ds;

Data structure must match

the JSON format for the

output parameters.

Most of this slide is

just ordinary RPG

definitions

25

Translate with JSON (4 of 5)

yajl_genOpen(*off);

yajl_beginObj(); // {

yajl_addChar('source': fromLang); // "source": "en",

yajl_addChar('target': toLang); // "target": "fr",

yajl_beginArray('text'); // "text": [

yajl_addChar(fromText); // "String here"

yajl_endArray(); //]

yajl_endObj(); // }

request = yajl_copyBufStr();

yajl_genClose();

Generate the JSON document to
send

Put the JSON data into a varchar
variable named "request"

Clean up the JSON data stored
inside of YAJL

26

Translate with JSON (5 of 5)

url = 'https://gateway.watsonplatform.net/language-translator/api'

+ '/v3/translate?version=2018-05-01';

monitor;

response = http_string('POST': url: request: 'application/json');

on-error;

httpcode = http_error();

endmon;

DATA-INTO result %DATA(response) %PARSER('YAJLINTO');

return result.translations(1).translation;

end-Proc;

Send 'request' (input)
and get back 'response'

(output)

Load output into 'result'
using data-into

Return the first string
translation back to

mainline of program

27

Got the Idea?

You now know the basics of how to call the Watson services from RPG.

• Find the service you want

• Create it

• Read the documentation for that service

• Use "curl" examples

• Adapt the "curl" examples to HTTPAPI

Following the same techniques will allow you to call any of Watson's services!

28

Example of Finding Approved Vendors

This Example uses Watson's Natural Language Understanding API

• Loop through a table (PF) with approved vendor's web sites

• Ask Watson to analyze them and find keywords on their site

• Put the keywords in a file

• Allow the user to query the file by keyword

29

The AVLIST Table

This is what the "AVLIST" (approved vendor list) table (PF) looks like (excerpt)

30

Natural Language Understanding (1 of 5)

exec SQL declare C1 cursor for

select * from AVLIST;

exec SQL open C1;

exec SQL fetch next from C1 into :AVLIST;

dow sqlstt='00000';

request = createJsonRequest(AVLIST);

monitor;

response = http_string('POST': url: request: 'application/json');

on-error;

response = '';

endmon;

extractKeywords(AVLIST.VNUM: response);

exec SQL fetch next from C1 into :AVLIST;

enddo;

exec SQL close C1;

This is the main loop that controls the program to analyze the vendor's sites:

31

Natural Language Understanding (2 of 5)

dcl-proc createJsonRequest;

dcl-pi *N varchar(1000);

VEND likeds(AVLIST) const;

end-pi;

dcl-s json varchar(1000);

yajl_genOpen(*off);

yajl_beginObj(); // {

yajl_addChar('url': %trim(VEND.VURL)); // "url": "http://example.com",

yajl_beginObj('features'); // "features" : {

yajl_beginObj('keywords'); // "keywords": {

yajl_endObj(); // }

yajl_endObj(); // }

yajl_endObj(); //

json = yajl_copyBufStr();

yajl_genClose();

return json;

end-proc;

Create the JSON document that is sent to Watson to tell it what to do.

32

Natural Language Understanding (3 of 5)

dcl-proc extractKeywords;

dcl-pi *N;

vnum packed(7: 0) value;

json varchar(100000) const;

end-pi;

dcl-s text char(40);

dcl-s i int(10);

dcl-s success ind inz(*on);

dcl-ds result qualified;

num_keywords int(10);

dcl-ds keywords dim(1000);

text varchar(40);

relevance packed(8: 6);

end-ds;

 end-ds;

The "extractKeywords" subprocedure interprets the JSON document that

Watson sent back, gets the keywords that it found, and writes those keywords to a

second table named AVKEYWORDS.

This AVKEYWORDS table (PF) can then be searched by the user.

{

"keywords": [

{

"text": "{string}",

"relevance": {number}

}

]

}

num_keywords is using
an RPG feature to count

the number of array
elements, so does not
appear in the JSON

33

Natural Language Understanding (4 of 5)

monitor;

data-into result %DATA(response: 'countprefix=num_ allowextra=yes')

%PARSER('YAJLINTO');

on-error;

success = *off;

endmon;

if success;

for i = 1 to result.num_keywords;

text = result.keywords(i).text;

if result.keywords(i).relevance > 0.35;

exec SQL insert into AVKEYWORDS values(:vnum, UPPER(:text));

endif;

endfor;

endif;

 end-proc;

Only use keywords

if Watson is at least

35% confident

34

Natural Language Understanding (5 of 5)

A second program uses traditional RPG techniques (code not shown – it's just normal

RPG) to search the AVKEYWORDS table that we just populated.

35

Visual Recognition API

Watson's Visual Recognition can "understand" the contents of photographs or

video frames. It seeks to answer two questions:

• What is in this image?

• Are there other, similar, images?

There is setup involved. You must "train" Watson in how to recognize a given

subject.

Once trained, however, it can recognize the same subject in any picture, even

from different angles.

36

Training the Visual Recognition Tool

Training involves:

• Upload .ZIP files with matching

images.

• Upload .ZIP file(s) with "negative"

matches (to teach Watson what not

to consider a match)

There is a tool on IBM Cloud that you

can use to train the API. (No need to

write code to do that if you don't want

to!)

37

Insurance Claim Example (Background Info)

This example started with an old, green-screen, RPG program for entering

insurance claims (such as car accidents)

38

Insurance Claim Example (Background Info)

Years later (but still awhile back) this application was converted to a web-based

GUI using Profound Logic's tools. RPG Open Access was used so the RPG

code didn't have to change, though a small amount of code was added to allow

picture uploads.

39

Insurance Claim Example (Background Info)

We decided to use Watson to help set the "Classication" of each claim.

• Trained Watson with images to recognize each classification category

• Now, when a user adds a new picture (or changes existing one)

• Watson figures out the right "classification" of the claim.

40

What Watson Determines

D classify_t ds qualified

D template

D code 10i 0 inz(1)

D errMsg 500a varying inz('')

D class 256a varying inz('')

D score 9p 7 inz(0)

D obj ds likeds(classify_t)

We wrote a routine named watson_classify for our RPG program. It accepts the

pathname to the photograph (in the IFS) and returns the following data structure:

• "code" and "errMsg" are used to report an error (if any)

• "class" is the classification determined by Watson

• "score" is how confident (from 0=unlikely to 1=completely positive) Watson was

41

Incorporating Into Existing Code

C If UploadInfo = '001'

C Eval done = *Off

// --

// New Code for recognizing image:

C eval obj = watson_classify(imagefile)

C if obj.score > 0.75

C

C select

C when obj.class = 'motorcycleaccident'

C eval cmmotor = 'Y'

C when obj.class = 'brokenwinshield'

C eval cmbrokenw = 'Y'

...etc...

The existing fixed format code was modified to call the Watson Visual

Recognition "classify" API when the image was changed, and based on Watson's

"first" choice (most likely classification) it sets the classification field to Y or N

If Watson wasn't 75% sure, we ignored it's classification (leaving it to the user)

42

Visual Recognition RPG (1 of 6)

dcl-proc watson_classify;

dcl-pi *n likeds(classify_t);

imageName varchar(256) const;

end-pi;

dcl-c WATSON_API_KEY 'the api key from IBM Cloud is put here';

dcl-s imagePath varchar(256);

dcl-s params varchar(256);

dcl-s form pointer;

dcl-s contentType char(64);

dcl-s tempFile varchar(256);

dcl-s rc int(10);

dcl-s docNode like(yajl_val);

dcl-s topClass like(yajl_val);

dcl-s node like(yajl_val);

dcl-s response varchar(100000);

dcl-s errMsg varchar(500);

dcl-s url varchar(500);

dcl-ds result likeds(classify_t) inz;

43

Visual Recognition RPG (2 of 6)

http_debug(*on: '/tmp/watson-claim15r.txt');

imagePath = '/www/profoundui/htdocs/profoundui/userdata/'

+ 'images/claims/' + %trim(imageName);

// Create a JSON document containing the

// parameters to the "classify" API:

yajl_genOpen(*off);

yajl_beginObj(); // {

yajl_beginArray('classifier_ids'); // "classifier_ids": [

yajl_addChar('insuranceclaims_1650517727'); // "id-goes-here"

yajl_endArray(); //]

yajl_endObj(); // }

params = yajl_copyBufStr();

yajl_genClose();

The input JSON document is very simple – it just tells Watson which "classifier"

to use (i.e. which set of data that we trained Watson with)

44

Visual Recognition RPG (3 of 6)

// Create a multipart/form-data form (like curl -F switch)

// to contain both the image and the parameters

// (this is created in a temporary IFS file)

tempFile = http_tempfile();

form = http_mfd_encoder_open(tempFile: contentType);

http_mfd_encoder_addstmf(form

: 'images_file'

: imagePath

: 'image/jpeg');

http_mfd_encoder_addvar_s(form: 'parameters': params);

http_mfd_encoder_close(form);

The image is uploaded using a "multi part form", like a web browser would use.

• One part contains the input JSON document (from last slide)

• The other part contains the image.

HTTPAPI's multi-part form data (MFD) tool creates this form in a temporary IFS

file. Although the images in the insurance claims are small, HTTPAPI has the

capacity to handle multiple gigabytes of data, so keeping the form in memory

isn't practical.

45

Visual Recognition RPG (4 of 6)

url = 'https://gateway.watsonplatform.net'

+ '/visual-recognition/api/v3/classify'

+ '?version=2018-03-19';

http_setAuth(HTTP_AUTH_BASIC: 'apikey': WATSON_API_KEY);

rc = http_req('POST'

: url

: *omit: response

: tempFile: *omit

: %trim(contentType));

// delete temporary file -- no longer needed.

unlink(tempFile);

Since the input is an IFS file, but I wanted the output to be returned as a string, I

used the http_req() routine.

There are two parameters for "response data", for string and file, respectively.

Also two for "send data", a string and a file. One send option and one response

option must be set to *omit.

46

Response JSON Document

{

"custom_classes":5,

"images":[

{

"classifiers":[

{

"classes":[

{

"class":"brokenwinshield",

"score":0.976408

}

],

"classifier_id":"insuranceclaims_1650517727",

"name":"insurance-claims"

}

],

"image":"image path name here"

}

],

"images_processed":1

}

We only upload one
image at a time, so there
will never be more than
one entry in the images

array.

Only asked for one
classifier (trained

databased) so
"classifiers" will only have

one array entry.

Watson might see more
than one class. But the
"top pick" will be first.

Conclusion: We want the first

array entry inside the first array

entry of the first array entry!

47

Visual Recognition RPG (5 of 6)

dcl-ds watsonData qualified;

dcl-ds images dim(1);

num_classifiers int(10);

dcl-ds classifiers dim(1);

num_classes int(10);

dcl-ds classes dim(10);

class varchar(100);

score packed(7: 3);

end-ds;

classifier_id varchar(100);

name varchar(100); end-ds;

end-ds;

end-ds;

{

"images":[{

"classifiers":[{

"classes":[{

"class":"{string}",

"score": {number}

}],

"classifier_id":"{string}",

"name":"{string}"

}]

}]

}

48

Visual Recognition RPG (6 of 6)

monitor;

data-into watsonData %DATA(response

: 'case=convert +

countprefix=num_ +

allowextra=yes')

%PARSER('YAJLINTO');

if watsonData.images(1).num_classifiers >= 1

and watsonData.images(1).classifiers(1).num_classes >= 1;

result.class = watsonData.images(1)

.classifiers(1).classes(1).class;

result.score = watsonData.images(1)

.classifiers(1).classes(1).score;

endif;

on-error;

result.code = -1;

result.errMsg = 'JSON Parse failed';

endmon;

return result;

end-proc;

49

Conclusion

This presentation barely scratches the surface of what Watson can do!

• Cognitive Computing

• A computer that can "think"!

• Understand human language better than ever before

• Understand human photographs better than ever before

• Can search and understand massive volumes of (unstructured)

documents and pictures and discover trends, patterns, etc.

• Best of all, anyone can use it – from RPG on IBM i!

• It's just a web service (API) call!

50

This Presentation

You can download a PDF copy of this presentation and the
sample code that I used from

http://www.scottklement.com/presentations/

Thank you!

